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+ ey(:) = 0 (e$l)), 

Equations (33) will be found to imply the requirement of certain stipulations concern- 
ing admissible relative orders of magnitudes of the coefficient functions E, G, I' and 

v. At the same time, more stringent types of stipulations (such as for example that 

Lx=0 (G)) would allow us the use of a first-step equation system without some of the 
terms retained in (29) (without affecting the validity of the results obtained through use 

of equations (29) as they stand). 

Finally, we note the following property of the equations of the iterative procedure 
above. For the case that all elasticity coefficient functions;E, G;v and -I’ are indepen- 

dent of the coordinate 2, that is for the case corresponding to equations (6) to (13). the 
terms omitted in going from equations (27) to equations (29) happen to be those s-deriva- 
tive terms which vanish in the exact solution. As a consequence, for this special case the 
results of the first step of the iterative procedure, in the maximally complete form (29). 
would not be modified by the subsequent steps of the procedure. 
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The static stability of a three-dimensional elastic body with small subcritical strains is 
considered. Because of the assumption of smallness of the subcritical strains the results 
obtained below are applicable to the investigation of the stability of elastic bodies fab- 
ricated from a metal and from stiff bonded plastics. These results are also necessary 

for the latter since bonded plastics have low shear stiffness, hence application of the 

applied theories sometimes results in large errors in determining the critical forces. 
Special attention is paid to obtaining general solutions of the static stability equations 

of a three-dimensional body compressed along the OS s axis by stress resultants of inten- 

sity Q., and along the OS, and O& axes by stress resultants of intensity p. In the par- 
ticular case of p -.: 9 , solutions of a similar form [l] permitted the investigation of the 

stability of cylindrical shells [2] and bars [3]. The first members of the asymptotic expan- 
sions of the magnitudes of the critical force, which agree with the value of the critical 
force obtained with the aid of the Kirchhoff-Love hypothesis, were calculated in @] and 

c31. 
General solutions in invariant form are constructed below, which permit the investiga- 

tion of the stability of hollow cylindrical shells, and of shells with a filler, of bars, of 
plates both single and multilayered subjected to the loadings mentioned above. As an 
illustration, the stability of rectangular and circular plates under multilateral compres- 
sion is considered, where the boundary conditions are satisfied approximately in the inte- 

gral sense. 
Let us consider the static stability of a three-dimensional body with small subcritical 

strains compressed by stress resultants of intensity q along the xs axis and by stress 
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resultants of intensity p along the Y, and Z.I axes. The fundamental variational equations 

can be represented, following [4- 71, as 

[%ll - Q~~a~,,s : P(8@,,, + bgum,& = 0 (i) 

Let us consider the body to be transversely isotropic with zs the axis of isotropy, then 
the connection between the stresses and strains can be represented as follows: 

uiJ = bJat&uk*k + (1 - &Ji)G,J(ut,J + uJ,t) (2) 

(111 = as, 0111 = @a, 4a = I/* (a11 - ald, GM = G?a = G 

It must be noted that the symmetry in the elastic properties here corresponds to sym- 
metry of the fundamental state of stress (subcritical state). This circumstance affords 
the possibility of including nonlinearly elastic media in the considerations since the lin- 

earized law connecting the stresses and strains (more accurately, their increments) in the 

considered state of stress can be represented by (2). Accepting the concept of the tangent 
modulus, we can also include stability under small elastoplastic strains in the consider- 
ations. Therefore, the results obtained below refer equally to nonlinearly elastic bodies, 
and to elastoplastic bodies, except that it is necessary to determine the values of the 
quantities aiJ and G by starting from the specific form of the relationship between the 

stresses and strains. 
Substituting (2) into (l), we obtain the equations in displacement 

L,jU j = 0 (m=1,2,3) (3) 

Lmi=6 al C (1-6jm) Gjm ~ $T Imail ik&kZj (4) 

+ (i -8,m)8jmGlma+- (qfQ,s + pwL1+ @b&J h & n 1 

We can represent the solution of the system (3) as one of tree modes, or as their 
linear combination 

(1, j = 1, I, 3) 

but not summed over j . The functions 0(i) are determined from Eq. 

We represent the solution of (6) as 
det 11 L, 11 0(j) = 0 

0(j) = 0r+ 0% + 0, 0,=0 (fml.%3) 

and we obtain the following algebraic equation to determine the 6( 

6”- [(an-p) (v-p) (G-P)]-~{(--~) [-(G+al#+ 

+ (G - P) (C - q) + (all - P) (asa - q)~ -I- (a11 - p) (C - p) (C - q)) 64 + 

+ [(au - P) e- - p) (C - p)] -’ (C - p) [- (C + a# + 

The roots of (8) are 

(5) 

(6) 

(7) 

(5) 

b;l’ = l/2(allY~) - p * 62.2 = + 
- (an f (3” + (G - PW - 4) + (all - p)(am - q) 
2 
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-((ola+C)~+(C-P)(G-~)+(all-P)(~~-~) 2 

1 
(G - d (hll - q) “1 

(a11 - PI (C - PI - (ai- - PW - PI (9) 

To determine the displacements we put 

a+t1 =Q, r, @(‘l = @‘I, a+*1 = a)3 + On, ui = r$) - n,(s) + q@l (19) 

and we introduce the new functions Y, which satisfy (7) and are connected with the func- 

tions aD, as follows: 
Yl=(c-PP) fqy&+&){&+&+[$$- 

(ha + a 
- 2 (fi - p) (an + aa 

3 

I I az,l *1 +2,3) 

Y,=(G+a,.)(~-P)[~+~+(G-q)(~-P)-l~*]*~ 

From the relationships (4), (5) and (9)-( 11) we obtain 

(Ii) 

(12) 

We can represent the displacements for a body with curvilinear cross-sectional con- 

tour as 
u =x n aY I-~&&Y*+Y*L .,=-;Yr&(Y*+Y*) 

a11 --P 3 

ua = G + (118 --+ 
( 

G-q @ 
8x1’ &+-- > an-p &% (Yr + u’d (13) 

If we put p = 0 in the general solution (7). (9) and (13), we then obtain the general 
solution for &axial compression elucidated in [l]. 

The boundary conditions for the stresses can be written as [S] 

pin - qcJirn - UmlnIP(6~r6nl + 6&z) + q&&31 (1’1) 

Here /‘“are the surface loading components in the body after deformation, rli are the 
direction cosines of the normal to the body surface prior to deformation. Let us turn to 

the investigation of specific problems. 
Let us consider inner instability according to the terminology of 181, where inner insta- 

bility is understood to be the phenomenon in which the structure of the material itself 

loses stability independently of the kind of boundary conditions. For example, for a 
laminated material this property is manifest in that warping of the laminae appear in a 
microvolume. The condition that the system (3) transforms into a system of hyperbolic- 
elliptic or of hyperbolic type will be the condition for the origination of inner instability 

in describing such materials within the scope of the theory of homogeneous orthotropic 
bodies. Let us limit ourselves to the case as3 > G and q1 > G which can be justified 
from reasoning of a physical nature. Then, as a result of analysis we obtain the critical 

value q+ = G (15) 
Here q+ is independent of p for p < G. 

Let us examine the stability of a rectangular .plate (*) compressed by stress resultants 
of intensity p along the-z, and xs axes, where the plate thickness is 2h, the length b 
and the breadth a. According to (14), the boundary conditions are 

3 In the considered problems we assume q = 0 in (1) and (14) throughout for plates. 
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alI = 0, Ullr = 0, am = 0 for 2, = f h 

Let us select the solution of (7) as 

(16) 

Y 
(17) 

It follows from (2), (9). (12), (14) and (17) that for or = 0, u and za = 0 the hinge- 

support conditions are satisfied in an integral sense, i, e. 

-P 
us Ix,*. 0 = 6. I=+ IXIZs) 0 = 0, s PaI *,=s, .dza = 0 

-h 

th 

Substituting the solution (17) into the boundary conditions (16). and taking account of 

(2) and (12). as a result of the customary procedure we obtain a transcendental equation 
to determine the critical value of P, which becomes after manipulation 

+ 1 =11- P 
us- -- ( c 

mll+C U-P Las) + %s&p] 13 ( Gp - 63a) - i] X 

Let us analyze the roots of (19) for thin-walled plates, when !yh < i. Utilizing this 
condition, we assume approximately 

Substituting (20) into (19). we obtain an equation to an accuracy of order (yh)‘, whose 
solution we represent as 

CQ 

P= x (Y4b, (21) 
f=O 

As a result of the customary procedure, we obtain a value of pf. Limiting ourselves 
to the determination of ‘PO, pl and pi we obtain the final result 

p=p. [1_~~‘(~+~)6(allfl~--n,:g~~(s..,-2,,.,] (22) 

Here P* denotes the value of the Euler force for buckling in the m,,n-mode when the 
stress-strain relationship is in the form (2) 

p*_; =11Q3 - alaa 

083 
n+$+ $) (23) 

Evidently (22) takes on the minimal value for m = n = 1. 

Let us examine the stability of a circular plate of radius R and thickness 2h com- 
pressed by stress resultants of intensity p in the tlza plane of the plate in the axisym- 
metric strain case. According to (13) we take the solution of the fundamental equations 
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in the form 

According to (14) the boundary conditions for zs = &- h are 

oas = 0, ~~3 = 0, for x8 = f h (25) 

According to (14) we represent the external loading components at r = R as 

p, = (‘J,, -t PUr*r 1, Pa = (or8 -L pus,r) (26) 

Let us consider the hinge-support case for a rectangular plate, and the rigid fixing case 
for a circular plate. We hence assume that dare the roots of Eq. 

JI(x,,) = 0 (27) 

It follows from (2), (9),(24) and (26). that for r = R the following boundary conditions 
are satisfied : +'I 

U,Ir=R=O, c P, \?=R dza=O, -irz+R =' (W 
-lh w=a 

We can always satisfy the third condition in (28) by adding an arbitrary constant to 
the displacement us in (24). 

Substituting the solution (24) into the boundary conditions (25) , we obtain after the 
customary procedure, a transcendental equation to determine 5 

Let us analyze the roots .of (29) for thin-walled plates, whereupon h / R 4 i. Limiting 
ourselves to the formation of a small number of protuberances along the radius, we obtain 
by analogy with (19)-(22) 

1 -- P- 3 
a114:;‘J~ma (+ [,_( “c f )” 6 (‘Wan - “‘3,c,c” (sew - 241.d] t3ol 

which takes its minimal value for k = 1, hence 

PI-- -p* 
* 6 (~++a - als2) + G (5~ - 2a13 

15o~G 3 
. Xl z 3.63 (31) 

where p l 1 denotes the value of the Euler force 

Therefore, as a result of analyzing (22) and (31) we arrive at the deductions : 
1. The Kirchhoff-Love hypothesis is asymptotically exact in the theory of plate sta- 

bility. 
2. The theory constructed by using the Kirchhoff-Love hypothesis yields a high value 
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of the critical force. 

These deductions have been obtained ~de~ndently of the properties of the plate 
material, and refer equally to both isotropic, and transversely isotropic materials with 

small shear stiffness, and to both nonlinearly elastic and elastoplastic materials if the 
concept of a tangent modulus is assumed in the latter cases. 

1. 
2. 

3. 

4. 

5. 

6. 

7. 

8. 
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STATISTICAL DETERMINATION OF THE TENSOR 

OF VISCOSITY COEFFICIENTS 

PMM Vol. 32, Ng5, 1968. pp. 935-938 

V. S, V~H~NKO, V. B. NEMTSOV and L. A. ROTT 
(Minsk) 

(Received March 5, 1968) 

An expression for the tensor of viscosity coefficients in the terms of the autocorrelation 
functions is obtained under the assumptions of the Kubo theory [l] of the linear reaction 
of a system subjected to a mechanical ~rt~bation, These coefficients are obtained as 
components of a fourth rank tensor for an arbitrary homogeneous anisotropic medium 
using the framework of the Gibbs formalism without, however, employing the well-known 
additional representations. Coefficient of the shear viscosity of an isotropic medium is 

determined to illustrate the proposed method of computing the integrals of autocorrela- 
tion functions. This method uses the concept of statistical averaging in the state of equi- 
librium and utilizes mean relaxation times. Double index correlative dis~ibution func- 
tions are used to obtain, by statistical methods, the relaxation times for the impulse- 

dependent quantities and for the spatial coordinate-dependent magnitudes. Numerical 
estimates for simple fluids show, that the impulse relaxation time is of the order of lO_l’l 
set, while the coordinate relaxation time is of the order of IO-l2 sec. 


